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A FABER SERIES APPROACH 
TO CARDINAL INTERPOLATION 

C. K. CHUI, J. STOCKLER, AND J. D. WARD 

ABSTRACT. For a compactly supported function (9 in Rd we study quasi- 
interpolants based on point evaluations at the integer lattice. We restrict our- 
selves to the case where the coefficient sequence Af, for given data f, is com- 
puted by applying a univariate polynomial q to the sequence I Zd , and then 
convolving with the data flzd . Such operators appear in the well-known Neu- 
mann series formulation of quasi-interpolation. A criterion for the polynomial 
q is given such that the corresponding operator defines a quasi-interpolant. 

Since our main application is cardinal interpolation, which is well defined 
if the symbol of (p does not vanish, we choose q as the partial sum of a 
certain Faber series. This series can be computed recursively. By this approach, 
we avoid the restriction that the range of the symbol of (P must be contained 
in a disk of the complex plane excluding the origin, which is necessary for 
convergence of the Neumann series. Furthermore, for symmetric A, we prove 
that the rate of convergence to the cardinal interpolant is superior to the one 
obtainable from the Neumann series. 

1. INTRODUCTION 

Let o E Co(Rd) be a compactly supported complex-valued function and 
(D:= (9(I))jEZd. We say that cardinal interpolation with 1o is poised, if for any 
sequence f := (fj)jEzd E 12, there is a unique sequence a := (aJ)jEZd E 12 with 

a *= f 

This condition is equivalent to the property that the symbol 0 of ( defined by 

(1.1) ~~~(at) (=AP(j)eij t, t E Rd 

IEZd 

does not vanish anywhere (cf. [2]). We denote the range of f by R(@), and 
throughout the paper we assume that cardinal interpolation with ?o is poised, 
or equivalently, 

(1.2) 0 ? R( 
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One condition that insures the validity of (1.2) is the requirement that 0 sat- 
isfies the metric condition 

(1.3) R() c {z E C: Iz-11 < 1}. 

For instance, if fo is symmetric, real-valued, and satisfies @(O) > 0, then o 
satisfies (1.3) (cf. [3]). In general, if the metric condition is satisfied, then 
the Neumann series approach introduced in [4] gives an efficient scheme for 
approximating the fundamental sequence A = (j)j)EZd, defined by 

(1.4) A * (D= (50j)jEZd, 

where 60j denotes the Kronecker symbol. Of course, since we assume (1.2), 
(1.4) is equivalent to A = 1 /I. However, in [6] we found that, in contrast 
with the univariate case, condition (1.3) is often not satisfied for multivariate 
cardinal spline interpolation. For example, if (o is a bivariate three-direction 
box spline whose center is close to the boundary lines of the correctness region 

(1.5) G := {(x, Y) i DR2: _ I < x, y, x _y < l} 

then (1.3) fails to hold. Therefore, a more general procedure for numerical com- 
putation of the fundamental sequence A is needed without imposing condition 
(1.3) on fo. 

As in [3], the cardinal interpolation operator is studied as the inverse of the 
"Schoenberg operator" 
(1.6) S:l12-12, ad-a*(. 

Using the fact that o has compact support, so that ( is a finite sequence, the 
relation (1.6) can be written in symbol notation as 

(1.7) (Sa) = a. 
Assuming condition (1.2) on ao, the inverse T:= _-1 is therefore given by 

(1.8) (Tf)- = PO lf f E 12 S 

or equivalently, Tf = A * f with the fundamental sequence A in (1.4). In 
order to construct Tf numerically, we find approximations A(n) E 11 to A 
with uniform convergence of the symbols 

(1.9) A forn-x+oo. 

Then, by Parseval's identity and some elementary calculations we have that 

(1.10) IITf-A(n) * fI112 = II(A-A ~(n)f 1L2 < IAj AiI0(n)|1I1fI112 0. 

The numerical computation of Aw , as given in [3], uses linear combinations 
of successive convolutions of the finite sequence (. For a complex univariate 
polynomial p(z) = = ckzk we use the notation 

n 

(1.11) _p(_) _ck (D_ (D *( . 
k=O k times 

The following observation gives a rather general tool for constructing appro- 
priate numerical procedures for the approximation of the fundamental se- 
quence A. 
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Proposition 1.1. Let o E C(Rd) be compactly supported, f its symbol with 
0 ? R(r) c C, and A the fundamental sequence (1.4). Then for any univariate 
polynomial p, 

(1.12) j|A - p(D)Ii2 < IA - (p(D))/ 1100 = 1 1/Z - P(Z)IIR(0) 

Here and throughout, 11 IIK denotes the supremum norm on the set K. 

Proof. The equality in (1.12) holds by the relations A = 1-/ and (p(0)) = 

p(o). The inequality is an immediate consequence of Parseval's identity. 0 

By (1.10) and Proposition 1.1, we see that any polynomial approximation 
scheme for the complex function lz on the domain R(@) yields a corre- 
sponding procedure for approximate cardinal interpolation with V. Since the 
degree of the polynomial p determines the size of the support of the finite se- 
quence p(D), we are interested in approximations for l/z which yield small 
errors for uniform approximation on R(0) by polynomials of low degree. The 
set R(@), which is a compact and connected set in C, plays a central role. 
If it is a subset of the disk of radius 1 around 1 (cf. (1.3)), then a possible 
polynomial approximation of 1/z may be obtained by taking the partial sums 
of the geometric series 

00 

(1.13) 1 (i _ Z)n |1-z| < 1. 
n=O 

This corresponds to the Neumann series approach for cardinal interpolation (cf. 
[3]). If V is symmetric, i.e., (o(x) = (-x) for x E Rd, and is real-valued, 
then 0 is also real-valued, and approximation of i/z by a Chebyshev series 
converges much faster than the geometric series in (1.13) (cf. ?5). 

An outline of this paper is as follows. In the next section we deal with the 
most general assumption on R(@) for this paper, namely: the polynomially 
convex hull of R(0) (i.e., the complement of the unbounded component of 
C\R(@)) does not contain the origin. It is within this framework that efficient 
approximation schemes based on the theory of Faber polynomials can be de- 
rived. Also, in ?2, a brief introduction to Faber polynomials is given. In ?3, an 
algorithmic construction of Faber polynomials in regions G, which are either 
sectors of a disk or Moebius transform of the disk, is given. This algorithm 
is applied in ?4 to derive a Faber series approximation to the cardinal interpo- 
lation operator. In ?5, results of the previous sections are applied to the case 
where the symbol V is symmetric. Here, the Faber series turns out to be a 
Chebyshev expansion that converges more quickly than the Neumann series. 
The paper concludes in ?6 with some quasi-interpolation schemes based on the 
material of the previous sections. 

2. FABER POLYNOMIALS ON SIMPLY CONNECTED REGIONS 

For the reader's convenience we give a short introduction to the theory of 
Faber polynomials. For details we refer the reader to [7, 8]. 

Let G be a simply connected bounded region in C. Then, by the Riemann 
Mapping Theorem, there is a unique conformal mapping V/ from the exterior 
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of the unit disk to the exterior of G of the form 
0 \ 

(2.1) Y/(u)=d u+zdnu-n) Julj>1, 
n=O 

with Vg(oo) = ox and VI'(oo) = d > 0. The positive number d in (2.1) is called 
the capacity of G. For notational reasons we often use the conformal mapping 
0(u) := (l/u), Jul < 1, which maps the unit disk D onto the exterior of G. 
The Faber polynomials PM of G are defined by the generating function formula 

uyVI'(u) _ 
0 

()- (2.2) -y(u)z 1 + Zpn)z , ul > 1, z E G. 

Equivalently, Pn can be defined as the polynomial part of the Laurent series 
expansion of [r- I(z)]n, z E G . Obviously, Pn is a polynomial of exact degree 
n with leading coefficient dn . 

Curtiss [7] gives the following recursion formula for Pn using the coefficients 
of the Laurent expansion (2.1): 

(2.3) { Pl(z)== -do, andforn=1,2,... 

Pn+I (Z) = Pi (Z)Pn (Z) - En-, dkpn-k(Z) - (n + 1)dn. 

To find a uniform bound for the polynomials Pn on G, we assume some addi- 
tional properties for the boundary 0 G of G, namely that 0 G has a piecewise 
differentiable unit tangent field il(s), where s denotes the arc-length parameter 
of 0 G, and that the total rotation 

(2.4) VG JOG Idd(s)I ds 

of OG is finite. It then follows, as shown in [8, p. 50] for example, that 

(2.5) SUP IlPn 1jl < VG 
n>1 7 

Faber polynomials are useful for finding series expansions of analytic func- 
tions on arbitrary simply-connected regions, 

00 

f AO + Zf nPn on G. 
n=1 

The convergence properties of these Faber series are extensively studied in the 
literature (cf. [8] and references therein). Thus, we omit these details, since we 
are only interested in a very special analytic function on G, namely f(z) = 1 /z . 
For this function, relation (2.2) already contains the necessary information. 

In light of the details discussed above, we now assume that G is a simply- 
connected bounded region in C, that a G has a piecewise differentiable unit 
tangent field with VG < oo, and that 0 ? G. Then there is s* E C , Is*I > 1, 
with VI(s*) = 0, hence by (2.2), we have 

(2.6) ? 1 (1Y(s7) Pn (Z)1, ze G. 
z sVyI(s*) n= L s 
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By (2.5) the series on the right-hand side of (2.6) converges as a geometric series 
uniformly on G. In fact, if qn is given by 

(2.7) qn s* V/ (s*) (1 + :(S*) skps 

then it follows from (2.5) that 

1 
-_ 

_ _ _ _ _ _ _ _ _ _ _ 

(2. 8) |-O ( Z) | _< Is I i'(t)| s - 

Combining these estimates together with Proposition 1.1 yields the following 
theorem. 

Theorem 2.1. Let vo E C(Rd) be a compactly supportedfunction with R(f) c G, 
where G has the following properties: 

(i) G is a simply-connected bounded region with 0 ? G, and 
(ii) 0 G has a piecewise differentiable tangent field and VG < Xc. 

Furthermore, let V be the conformal mapping in (2.1) associated with G, Pn 
the Faber polynomials associated with G, and s* = v-l (0) . Then qn given in 
(2.7) is a polynomial of exact degree n which satisfies 

11- qn((D)1112 < jA -(qn((D)) 11w 
(2.9) < VG Is*_I_-n-1 

where A is the fundamental sequence given in (1.4). 

The main restriction on G, and hence on R(@), in the above theorem is that 
G must be simply connected. In [12], an example was given of a univariate 
real-valued function g with the following property: the range of the symbol of 
any integer shift (0 := g(. - j), i E Z, cannot be imbedded into any simply- 
connected region G with 0 ? G. If, however, (0 is real-valued and @(0) > 0, 
and if there is a region G as in Theorem 2.1 (e.g., the polynomially convex 
hull of R(@)), then by the symmetry property @(z) = (-z) the set R(@) 
is a subset of the region C\R-. Then, by the compactness of R(@), we can 
imbed this set into a sector of a disk centered on the positive real axis. So 
the assumption (ii) on 0 G can simply be realized by an appropriate choice for 
G. Since the main work in the approximation procedure will consist in finding 
the explicit coefficients in (2.1), we restrict our attention to circular triangles 
which can be obtained as Moebius transforms of a sector of a disk. For these 
geometric figures, a derivation of the conformal mapping and the numbers d, 
dn which appear in (2.1), is given in ?3. This setting seems general enough for 
dealing with all the known cases of cardinal: spline interpolation, including the 
case where (0 is a bivariate shifted three-direction spline in R2. 

3. CONSTRUCTION OF THE FABER POLYNOMIALS FOR CIRCULAR TRIANGLES 

As mentioned above, we restrict the algorithmic construction of the Faber 
polynomials to regions G which are the sector of a disk, or the Moebius trans- 
form of it. Since dilations, rotations, and translations of G have a simple 
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FIGURE 1 

The regions G112 and G1/2,2/3 

effect on the conformal mapping and the coefficients d and d, in (2.1), we 
first derive an explicit expression for the two regions 

(3.1) Gt:= {z: zj < 1, Iargzj < 7 1 - I-) 0 < t < 2, 

(3.2) Gta ={ -az :ZE Gt}, -1 <a< 1. 

Typical shapes of these regions are shown in Figure 1. The exterior angle at the 
"critical points" 0 of Gt and -a of Gta has size irt. 

Our aim is to find a recursive scheme for the coefficients d,, n > 1, in 
order to apply the equation given in (2.3) for fast computations of the Faber 
polynomials p, on G = Gt or Gt, a . For notational reasons we prefer to specify 
the conformal mapping 0 from the inner unit disk D to the exterior of G, 

(3.3) 0(u) =d ( +Zdun) , Jul < 1. 

Lemma 1. Let 0 < t < 2, -1 < a < 1 . Then the following statements hold. 
(i) The conformal mapping Ot from D onto the exterior of Gt with Ot(O) = xc 

and res(Ot, 0) > 0 has the form 
t 

Ot (U) =dt (-t(l - u) + 2/ +;= a 
(3.4) 4 u ~(2-t)(1+ u) J 

* t1 - u+ ( +Ju2-t~), lo < 1, 

where dt = 4(2 - t)-1+t/2(2 + t)-1-t/2 is the capacity of Gt. Furthermore, 
6t'(u) <0 for all real uED. 

(ii) If b := 1(l/a), and if m1 and m2 are Moebius transformations given 
by 

(3.5) mI(z) : - az M2(u) I +bu' 
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then the conformal mapping Ot, a from D onto the exterior of Gt a with t, a (0) 
= oo and res(Ot,a; 0) > 0 is given by 

(3.6) Ot,a(U) = ml o St o m2(u), lul < 1. 

Proof. As shown in [10, p. 221], we find that the conformal mapping of the 
upper half plane to the exterior of the rotated sector Ht := ei(l-t/2)Gt is given 
by 

(3.7) 4(w) =w (It 1 +tV1 + ' ImW > 0. 

The "critical points" of Ht are obtained as 4(0) = 1, 4(1) = 0, and (oo) = 
einrt. Note that 4(c) = ox for 

t2 '2 
c = -1+ 2 + it/1 - 4 Icl =1 

The Moebius transform 

(3.8) w(u)lc u, Jul < l 

with c as above, satisfies w(-l) = 1, w(c) = 0, w(c) = oc, and hence w 
maps D conformally onto the upper half plane. Inserting (3.8) into (3.7) and 
rotating by a factor e-i(l-t/2) gives the conformal mapping from D onto the 
exterior of Gt, namely 

(3.9) 0(u) = e-m(t/2) (1+ VW\-U) 1 -txVW'(+ w(u) u < 1 

with 6(0) = ox. In order to simplify (3.9), we use the relations (1 + c)2 = t2c, 
Icl = 1 . A careful analysis of the argument of the complex root shows that 

(3.10) t 1cuf- u (c- u)(1 - cu) = +(1 +u)2 - t2u. 

So the last term in (3.9) can be written as 

1 + t VWjU~+ w(u) _1 u + /l+)-~ 

(3.11) 1 - t jW-()+ w(u) 1 -a-+( u2-~ 

=-(4 -t2)U (1 -u + A/1+u-tu) 

Since w(u) lies in the upper half plane, the term (1 - /Iw )/(1 + V'&-iw) 
has negative imaginary part. If we fix the branch cut of the complex logarithm 
along the negative real axis, we therefore have 

eitrt/2 
/ (U-0 il- A 
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Simplifying the last term, using (3.10) and the relation (1 + c)/(t(1 - c)) = 
i(4 - t2)-,/2 yields 

i(i - I 1 - 2 ~ + ww(u)) 
1 + Vf -)W(U) 

(3.12) i(l + c)(t(l - u) - 2 (1 + u)2 - t2u) 
t(l -c)(1 +u) 

=(4 - t2) -1/2 . 22( ) ~ - 0~ - U) 

Combining (3.11) and (3.12) finally gives 0(u) = St(u). Obviously, dt given 
in the lemma is the residue of Ot at 0. 

We next wish to show that S'(u) < 0 for real u. First observe that S'(u) is 
real for real u. This is an immediate consequence of the relations 

(1 + U)2 - t2u > (1 - IuI)2 > 0 

and 
2 (1+u)2-t2u - t(l - u) > 0 

for lu < 1, 0 < t < 2, which can be readily verified. As a conformal mapping 
St has a nonvanishing derivative, so S'(u) has constant sign for real u. A 
comparison of the function values Ot(-l) = 0, St(O) = ox, St(l) = 1 gives 
that St(u) < 0 for real u, proving (i). 

For the proof of (ii) note that ml and m2 are automorphisms of the unit 
disk (and of its exterior). Hence, with Gta in (3.2), ml maps the inte- 
rior and exterior of Gt onto the interior and exterior of Gta, respectively. 
Thus Ot, a is a conformal mapping from D onto the exterior of Gta, and 
Ot,a(O) = mi(Ot(b)) = ml(l/a) = ox. Furthermore, we obtain its residue at 0 
by elementary computations, namely 

res(Ot,a; 0) =res ( om2 -a ;0 1 1- A6 o m 

_ 0 om2(0)-a __a-l-a 

-a(Ot 0 M2)'(0) -aOt'(b)ml (0)' 

With m (0) = 1 - b2 > 0 and S'(b) < 0, we conclude in view of (i) that 
res(Ot,a; 0) > 0 - 

By means of a decomposition of the mapping t, a into more elementary 
parts we are able to compute the Laurent coefficients d, in (3.3) recursively. 
This observation is made more precise in the following algorithm. 

Algorithm 3.1. Assume that the conditions 0 < t < 2, -1 < a < 1, and 
b =6t- (1 /a) hold. 

The initializations for the algorithm are as follows: 

ao = a2 = 1 + b2 _ t2 ab, = 4b - t2 (1 + b2)t 

Ao = /2 = b, fl, = 1 +b2 K = 2(4-t2)lt/2; 

f =(1 +b)2-t2b, g=(2-t2)(1+b2)+4b, h= f/f. 
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The starting values for the algorithm are defined as: 

fo= -' f = - ; g= 1, g1 = g; ho= 1, hi= f; 

ro= fo, r1 =gf1; so=h, 2gf 

(-t(1 - b) + 2h vI= t2(l - b)fovo; 

wo =ao + (1 - b)h, w1 = a, + (1 - b)(si - so); 

x0=vow0, x1=vIw0+vow1; 
Ko = 6 -oo flo = vx - wo lo 

K2Xo - K2XXo - b/h zi = fixo-bx1; 

d =-A d-=l. 
Z1 

The algorithm is recursively defined for n > 2 in the following way: 

_(1 - 2n)fn-i g____ fhn_ 

(- 2f gn= ggn-i; hn= n 

[n/2] grn-1 frn-2 
rn= hkgn-2kfn-k; Sn + 

k=O ~~~ ~~~2n n k=o 

=t2(l i-b) n-- (n - 1)Vn-I Vn = n . , rkvn- I-k- n ; 
k=O 

Wn = c2,na2 + (1 - b)(sn - sn1) (G2,n = Kronecker-symbol); 
n K2XnXO-52,nb/32 

Xn=Z:VkWn-k; Y 
k=O Kyo 

(52 n fl2XO - bXn 
Zn = d2, nA2XO-dn-2 =Yn- E Zkdn-l-k. 

z1 ~~~~~~k=2 

Theorem 3.2. For 0 < t < 2 and -1 < a < 1 the above algorithm generates the 
Laurent coefficients d and dn in (3.3) of the conformal mapping 6t, a from D 
onto the exterior of the transformed sector Gt, a . 

Proof. Consider the following functions which are defined on D: 

f(u) -(1 + b)2(1 + u)2 - t2(u + b)(1 + bu), 

ru)= 1 s(u)= f(u), 

(3.13) v(u)= (( 1+m2(u) ) 

W(u) = u 1 - M2(U) + M2() 

x(u) =v(u)w(u). 
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After some elementary calculations we obtain 

(3.14) Ot"a(U) = KX(O)X(U) - b(u + b)(l + bu)/K 
(u + b)(l + bu)x(O) - bx(u) 

with K as in the initializations in Algorithm 3.1. Furthermore, for real u we 
have 

(3.15) v(u) (t ( +b)(1+)u) ) 

and 

W(u) = 2 ((1 - b)(1 - u) + f(U). 

Now, with the aid of Lemma 3.3 below, the following relations are obtained for 
the coefficients in Algorithm 3.1: 

- [(u + b)(1 + bu)](n)(O) n = 1, 2; 
n! nO12 

f= f(O) = f"(O)/2, g =PO); 

fn= (f'() 1/2) ( _ ())-n-12 

(n! ())fn h ( -( ))n gn- n! 
- ' n 2n n! 

Moreover, the scalars rn, sn, vn, wn, xn are the Taylor coefficients of the cor- 
responding functions in (3.13). Hence, we obtain the representations 

( n=1 n=2 ) 
for the numerator and denominator in (3.14). Comparing coefficients of the 
power series in y = at, z gives the recursion for the dn . E 

Lemma 3.3. For the functions f, v, w in (3.13) and for any y E R, the fol- 
lowing three conditions are satisfied: 

(fy)(nl) -[ni/2] (fII1)k (fI)n-2k n__ (i) n!Y)( ) v 2kE / )! * (nI - 2k)! * Yn-kf , n > 0O 
n 

k=O 
2k n-2) 

where Yk =k! GO; 

V(n)(0) t2(1 - b)(f-1/2v)(n-1)(0) - (n - 1)v(n- )(0) n > 1; 
() n! n!n1 

(iii) w(O) = ao + (1 - b) (), 

-( ) = an + (1-b) [ (n! (n-i1) ]' n > 1, 

with ao, al, a2 as in Algorithm 3.1 and an = 0 for n > 3. 
Proof. (i) can be verified by induction after observing that f"' = 0. We omit 
further details. For the proof of (ii) we use the relation 

v'(u) t2(1 - b) 

v (u) (1+ up Vs / (u- 
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Multiplying by (1 + u)v (u) and differentiating (n - 1) times gives the formula 

(1 + -)i(n)(u) = t2(l - b)(f-1/2V)(n-1)(u) - (n -l)(n-1)(u), 

which proves (ii). With ao, al, a2 as given in Algorithm 3.1 we find 

w(u) = ao+ alu+ a2u2+(l -b)(l -u) f(u). 

Now (iii) follows from an application of the Leibniz formula. [ 

The given algorithm for the computation of the Laurent coefficients of Oft, a 
is very efficient. To compute dn in the (n + 2)nd step, we need approximately 
(4n + 7) real multiplications. In contrast to the number of multiplications 
used in computing the convolution product PI (D)Pn (0) , which appears in the 
recursion (2.3) for the Faber polynomials, the complexity of Algorithm 3.1 is 
negligible. (Here we assume that the finite sequence q has support on the 
vertices of a d-cube with d > 2, as is the case for three-direction box splines.) 

So far we have excluded the case a = 0 from our consideration of Ost,a . It 
can easily be seen that Algorithm 3.1 produces the Laurent coefficients of Ot if 
we start the algorithm with a = b = 0. The effect of dilations and translations 
of the region Gt, a can be described as follows. For r > 0 and r E C, let 
Ota, r, , denote the conformal mapping from D onto the exterior of rGt, a + T. 
Then Ot, a, r, , has the expansion 

(3.16) Ota,r,T(u) = rd ( + (do + + E dnUn) 

where d and dn are the coefficients of Ot, a 

TABLE 1 
Numerical values of the Laurent coefficients for Ot, a 

t= 1/2,a=o t = 3/2, a = 0 t = 3/2, a = 1/2 

d 9.38786(-1) 5.31127(-1) 8.53371(-1) 

do 1.25 (- 1) 1.125 2.95165(-1) 

d1 -1.13281(-1) -1.75781(-1) -1.92083(-1) 

d2 1.00098(-1) -1.53809(-1) 8.98302(-2) 

d3 -8.61359(-2) 1.04782(-1) -1.03362(-2) 

d4 7.21111(-2) -8.53157(-3) -3.52386(-2) 

d5 -5.86988(-2) -4.55868(-3) 4.83060(-2) 

d6 4.64729(-2) -1.35177(-2) -3.95184(-2) 

d7 -3.58594(-2) 9.95135(-3) 2.25249(-2) 

d8 2.71095(-2) 1.10246(-3) -8.05059(-3) 

d9 -2.02934(-2) 3.96085(-4) 8.21071(-4) 

d1o 1.53168(-2) -4.75490(-3) -1.29118(-6) 

d50 1.32845(-3) -3.09303(-5) -5.67362(- 5) 
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As an example, we consider the pairs (t, a) = (4, 0), (4, 0), and (3, I), 
and compute the coefficients d, and d of the conformal map f ta (cf. (3.6)) 
by Algorithm 3.1. Both the values of d and the first eleven values of d, are 
listed in Table 1. 

4. THE FABER SERIES APPROACH TO CARDINAL INTERPOLATION 

As has been the case throughout this paper, we continue to assume that o E 
C(Rd) is compactly supported and 0 0 R(@) . We are now ready to formulate 
an algorithm for the approximation by Faber series to the cardinal interpolation 
operator 

T: 12 -+12, f -+A* f, 

where A is the fundamental sequence appearing in (1.4). Hereafter, we assume 
that the parameters 0 < t < 2, -1 < a < 1, r > 0, and T E C are chosen to 
satisfy 

(4.1) R(@) c rGta + T:= G, 0 0 G. 

The approximations to A, namely A(n) := q(F) ()) are based on partial sums 
q(F) of the Faber series of 1/z on G (cf. (2.7)). For the computation of A(n) 
the following steps should be performed. 

Algorithm 4.1. Assume that t, a, r, T are given as in (4.1). 

Step 1. Compute b := f- 1 (1 /a) with Ot in (3.4), using Newton's method. 

Step 2. Compute u* E D, where 

(4.2) rat,a(U*) +T = 0, 

Ota as in (3.6), using Newton's method. Note that the iteration is real for 
T E R. 

Step 3. Compute d and do, using Algorithm 3.1. Thus, after initializing the 
recursions by 

ao:= (ru*6t',a(u*))-4, a, u*ao, 

1 T1I 
pi (0) := PI := r7d ? - (do 

+ d) where I := (60 j) jEZd rd \rdlJjZ 

q(F)(D) := aoI + a1P1, 

the algorithm proceeds for n > 2 by means of the equations 

an = U*an-1,. 

dn- as in Algorithm 3.1, 
n-2 

Pn (F) P= Pn = P * Pn- 1 dkPn-1-k -ndn-I 
k=1 

A _ _= q(F)(D) := q(F) 1(I) + anPn 

A bound on the total rotation (2.4) of G = Gt,a is given by VG < 107r, 
since G is a circular triangle with two exterior angles of size 37r/2 and one 
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TABLE 2 
Convergence parameters depending on a 

t IT - al/t a U* a* 

1/2 0.01 0 -0.996289 0.854 -0.991298 

0.0025 0 -0.999071 0.903 -0.997492 

0.0001 0 -0.999963 0.981 -0.999541 

1 0.1 0 -0.926 -0.212 -0.899 

0.05 0 -0.962 -0.108 -0.927 

0.01 0 -0.992 -0.021 -0.988 

3/2 0.215 0 -0.767 -0.213 -0.719 

0.136 0 -0.846 -0.121 -0.827 

0.0464 0 -0.944 -0.029 -0.942 

exterior angle of size 7rt. For a = 0, hence G = Gt, we even find the bound 
VG < 57r, since the two straight boundary segments do not contribute to VG . By 
employing Theorem 2.1 and the observation that s* = I1/u* , where s* appears 
in (2.9), we can conclude the following. 

Theorem 4.2. Let 9 E C(Rd) be compactly supported, and let t, a, r, T be 
chosen as in (4.1). Furthermore, let u* E D solve theequation rota(U*)+T = 0. 
Then A(n) := q(F)((D) satisfies 

(4.3) E(F) I< l/(u*)l - IU*I). 

For a real shift parameter T, the size of the parameter u* = u* (t, a, r, T) 
in (4.2) depends exponentially on the exterior angle 7rt of G = rGt, a + T at the 
boundary point T - ar = rt,a(- 1) + T. As shown in [8], the following relation 
holds: 

(4.4) (IF- - al 

So, a small exterior angle irt of the sector Gt at 0 drawn in Figure 1 forces 
u* to be close to -1. In typical examples involving three-directional shifted 
box-splines in R2, sectors with an exterior angle not smaller than 7r/2 seem to 
be most useful. A comparison of some numerical values for u* when r = 1, 
t and IT - al are kept fixed, and a is varied (cf. Table 2) demonstrates that 
a careful choice of a can improve the convergence rate, although the exterior 
angle 7rt is not affected. 

5. CARDINAL INTERPOLATION WITH SYMMETRIC FUNCTIONS 

In this section, (O E C(Rd) represents a compactly supported symmetric 
function, i.e., V(x) = io(-x), x E Rd. Thus, the symbol 9 is real-valued. 
Hence, if 0 ? R(0) and (0) > 0, then R(0) is a real interval, namely 

(5.1) R()= [T, T + 2r], T, r > O. 
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Although the Faber series approach does not apply directly, we note that the 
Chebyshev series can be obtained by a limiting process from the Faber series. 
For this reason, we compare in this section the Chebyshev series and Neumann 
series approach in generating approximations Aw to the fundamental sequence 
A given in (1.4). The rate of convergence of the approximations An is de- 
termined by the rate of approximation of the Chebyshev and Neumann series 
approximation to 1 /ZI(T,T+2r] - 

As mentioned above, the series expansion in Chebyshev polynomials Tn of 
the first kind normalized so that II Tn T lo = 1 may be considered as a generaliza- 
tion of the Faber series (see Remark (ii) at the end of this section for details). 
Since the approximation properties of Chebyshev polynomials are well under- 
stood, our derivations and estimates are derived in terms of the Chebyshev 
polynomials Tn. However, in light of Remark (ii), our conclusions will relate 
to Faber series. 

In order to use the Neumann series approach to cardinal interpolation, we 
can choose the midpoint of the interval [T, T + 2r], namely T + r, as a scaling 
factor and obtain 

1 _ 1 _ _ _ 
n 

(5.2) E 1 - I z E [r, T+ 2r]. 

Letting qnN) represent the partial sum of (5.2), we have that 

(5.3) I|--qn || + r 

and this is the best possible error constant for a geometric series approximation 
of l/z on R(0) . Since the constant in (5.3) determines the rate of convergence 
of the approximations Aw to the fundamental sequence A in (1.4), we look 
for other schemes with a lower error bound. 

The usual Chebyshev polynomials Tn of the first kind on the interval in 
(5.1), normalized to IITn IIK = 1, are given by 

(5.4) To(z) = 1, Ti(z) = z r ' 
Tn+, = 2T1 n -Tn- 

Based on the generating function formula for such functions (cf. [1, p. 783]) 
we find, with a:= (T + r)/r and fl := a - va7T E (0, 1), the relation 

(5.5) z r( 2- +l2) +2 -f)nT (z)) z e [r, r+2r]. 

Letting qnC) represent the nth partial sum of the Chebyshev series (5.5), we 
obtain the error estimate 

(5.6) E (C) 1 
n(C) 

- 4fl+ 

((Z) = z--n [r r+2r] r(l- f2)(1 + l)3 
Figure 2 shows a comparison of the convergence rates y = r/(T + r) for the 

geometric series and 

fl ( ) 1 -2 Y E y(0 1), 
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FIGURE 2 

Convergence rates compared 

for the Chebyshev series. We see that the Chebyshev series (5.5) gives, in all 
cases, a better convergence rate, while the computational effort for determining 

q(C), using recursion (5.4), is slightly larger than that required for qN). 

Remarks. (i) It is well known that the nth partial sum qC) of the Chebyshev 
expansion (5.5) of l/z is a "near best approximant" in the space HIn of all 
polynomials of degree < n. In fact, comparing (5.6) to the error 

E inf 1- 
_ /fln 

[T T+2r] 

for best approximation, as given in [1 1, p. 32], we obtain 

2(a+ 1) () 

Hence, the approximations q(C) give rise to the best possible geometric conver- 
gence rate. 

(ii) There is an interesting connection between the Chebyshev expansion (5.5) 
and the Faber series (2.6) of l/z. The conformal mapping from the unit disk 
D onto the cut plane C\[T, T + 2r] is given by 

6(u) = - (+ 2o+u) 
2 (u 

(cf. [10, p. 79]). If we apply the recursion (2.3) for the Faber polynomials 
formally, we obtain the equations Pn = 2Tn, n > 1 . Furthermore, for fl as in 
(5.5), it follows that /l + 1//I = 2a!, and hence 0(-/1) = 0 . Thus, the expansion 
(5.5) coincides with the formal Faber series of l/z on the interval (5.1). 

6. QUASI-INTERPOLATION SCHEMES 

As before, let ( E C(Rd) be compactly supported with 0 0 R(0). Without 
loss of generality we assume O(0) = 1 . For a complex sequence a = (aJ)jEZd, 
we use the notation 

a * Eaj(I - j) 
jEZd 
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for the semidiscrete convolution. Then the commutator (cf. [5]) of ( is given 
by the mapping 

(6.1) [flk] := (flZd) * - *If, EC(Rd). 

The maximal integer k such that 
(6.2) [oko] = 0 for all P E rk-l 

is called the order of the commutator of v(. It is well known that Hk-I1 is the 
maximal space of polynomials of total degree which is contained in 

5 (Vo) := {a * V Ia = (aj) is polynomially bounded}, 
and that k is the maximal approximation order for "local approximation" (cf. 
[9]) with scaled versions of 5((o). 

We now consider the cardinal interpolation operator on function spaces, 

(6.3) 9t := (A * flzd) * , v fe C(Rd), 

for polynomially bounded f . For the finite approximations An to the funda- 
mental sequence A developed in ??4 and 5, let g9n be defined by 
(6.4) $gnf := (A(n) * f zd) * V, f E C(Rd). 

A desirable property of these local approximation schemes is that they define 
quasi-interpolants, i.e., they reproduce all polynomials in 1Ik-I . It is well known 
(cf. [3]) that with A~n) = qN) (I), the corresponding operators g9(N) in (6.4) 
have this property for 

(6.5) ~~~~~ k -l for generalq, 
(6.5) - 

> 
(k - 1)/2 for symmetric 0. 

In this section we give a systematic study of the quasi-interpolation property 
for operators of the form (6.4), where An = q(1D) for some univariate poly- 
nomial q. Our aim will be to modify the Faber series approach (?4) to a 
quasi-interpolating scheme. 

If k is the order of the commutator of (, then the quasi-interpolation prop- 
erty of 8n in (6.4) can be described by the equation 

(6.6) (I - q() * (D) *PlZd = O for all p E Ik-l. 
The next result gives a sufficient condition for the polynomial q to satisfy (6.6). 

Theorem 6.1. Let (0 E C(Rd) be compactly supported, k the order of the com- 
mutator of (, and @(O) = 1 . 

(i) For a univariate polynomial q, condition (6.6) is equivalent to 
(6.7) Da(l - (q o U) * r)(0) = 0 forall jal1 < k - 1. 

(ii) If Dap(O) = 0 for 1 < I&a I < m - 1, then a sufficient condition for (6.6) 
to hold is that 

k - 1 
(6.8) [1 - zq(z)]6u)(1) = 0 for all 0 < < k m 

Furthermore, if io is a univariate function and '(m)(0) #A 0, then (6.8) is 
necessary and sufficient for (6.6) to be satisfied. 

Note that in (6.8) only q, and not -, is involved, and that (ii) generalizes 
(6.5). 
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Proof of Theorem 6.1. The sequence (P Izd) is the Fourier transform of the tem- 
pered distribution P = ZEjzZd P(j)xj, where XjV' = (27r)-d f(O, 2,)d VI(x)eifl Xdx 

for any periodic test function V/. After taking Fourier transforms, condition 
(6.6) is equivalent to 

(6.9) (1-Oq(O)).*=_ 0 forallpEIuk-l. 

Letting pa!(x) = (ix)a, I a < k - 1, we have that pia = Da3 with the periodic 
Dirac distribution 3. Thus (6.9) is equivalent to the condition that for all 
periodic test functions V/ 

0= (1 - 0 * q(O))ia(V') 
- Da(( 1 - q(O))VI)(0) for all Ijl < k - 1, 

and this proves (i). We now show that (6.8) implies (6.7). For a! = 0 this 
is obvious. Moreover, if Rj(x) is defined by Rj(x) := [z * q(z)] U)(O(x)), 
then clearly a/axRj = Rj+la/axlo, j > 0. Furthermore, for 0 < v := 
Ial < k - 1 with Da = 0/axi, . /axiv , let A4,j be the collection of all 
partitions (MI, ... , Mj) of {1, 2, ... , v} with nonempty MK, and write 
DMf = HpEM a/lxif . Then the following relation holds: 

vI / 

(6.10) Da(@ * (q o @))(0) = ZRj(0) ( f(DMK?(0))). 
j=1 <(M,, ..., Mj)E,*fv j K= I 

For 1 < j < (k - 1)/m the corresponding term in the above sum vanishes 
by assumption (6.8). The remaining cases are characterized by the inequality 
(k- 1)/m < j < v < k- 1 . Forthese cases, any partition (MI, ... , My) E X>v, j 
contains at least one MK with cardinality < m- 1; hence, DMK O (O) = 0. Thus, 
(6.7) is proved, and this gives (6.6). 

The necessity of (6.8) for univariate o with (m)(0) :# 0 can be seen by an 
inductive argument using (6.10). For M = 0, this is obvious, hence Ro(O) = 
q(l) = 1. For (k - 1)/m > M > 0, the relation (6.10) with Ca = my simplifies 
to 

0 = RL(0) * (O(M)(?)) 

assumingthat Rj(O) = 0 for 1 < j < u- 1. Hence, R(O) = [zq(z)](O( 1) = O. 
which proves (6.8) and completes the proof. 0 

The partial sums q(F) (or q(C)) of the Faber (resp. Chebyshev) expansion 
of l/z in (2.6) and (5.5) usually do not satisfy (6.8), even for M = 0. In order 
to combine the advantages of quasi-interpolation with the fast convergence of 
the Faber (or Chebyshev) series, we propose the following "blended" approach 
to cardinal interpolation. 

The notation for the next theorem agrees with that of the previous theorem. 

Theorem 6.2. Let i := [(k - 1)/m] denote the integer part of (k - 1)/m and 
assume that Dar(O) = 0 for 1 < lol < m - 1. Then, if q (F) represents the 
partial sum of the Faber expansion of 1/z, it follows that the polynomial 

(6.11) q(B) = (1 _ Z)k + ( z)yqn 
( n > O. 

1=0 
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has exact degree n + u + 1, and the quasi-interpolation property 

(6.12) (q (B) 
+ (D) * PIzd) * f =p, pE rk-i, 

holds for all n > 0. Furthermore, the fundamental sequence A satisfies the 
inequality 

(6.13) jAqnIa 1(IA)jj,2 ? q-n(+# ( ))lI?-Ill - (Zn+R()Enf 

where E(F) is defined in (4.3). 

Proof. The polynomial q(+,+I satisfies (6.8). The error bound in (6.13) is 
obtained by an application of Proposition 1.1 and Theorem 2.1, together with 
the observation that 

I - 
q(B) +I.z) = l _ Z) -(-Z lz (Fn (Z)( 

=-(1 -z)+(1 - zqn)(z)). 0 

Remark. The polynomial qVB+1 induces the local approximation operator 

n;(if_ (qf+lz+l(D)*f|d) * (, f E C(Rd). 

This operator can also be described as the Boolean sum of 8njj) e5(F), where 
these operators are derived from the polynomials q(N), qnF) as in (6.4). So the 
quasi-interpolation property (6.12) of B) is inherited from the corresponding 
property of A1(N), which is obvious in view of condition (6.8). 
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